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Abstract—We consider a line network of nodes connected by
additive white Gaussian noise channels and equipped with local
feedback. We study the velocity at which information spreads
over this network. For the transmission of a data packet, we
derive an explicit positive lower bound on the velocity for
any packet size. Furthermore, we consider streaming, that is,
transmission of data packets that is generated at a given average
arrival rate. We show that a positive velocity exists as long as the
arrival rate is below the individual Gaussian channel capacity
and provide an explicit lower bound. Our analysis involves
applying pulse-amplitude modulation to the data (successively
in the streaming case) and using linear mean-squared error
estimation at the network nodes. Due to the analog-linear nature
of the scheme, the results extend to any additive noise. For general
noise, we derive exponential error-probability bounds. Moreover,
for (sub-)Gaussian noise, we show doubly-exponential behavior,
which reduces to the celebrated Schalkwijk–Kailath scheme when
considering a single node. By viewing the constellation as an
“analog source”, we also provide bounds on the exponential
decay of the mean-squared error of source transmission over
the network.

I. INTRODUCTION

The demand for real-time communication over large-scale
networks is steadily increasing due to the growing size and
the distributed nature of modern-day technology. A central
problem of interest in this context is transmission over a
cascade of channels interconnected by relaying nodes.

From an information-theoretic perspective, without delay
constraints, assuming that each channel may be used the same
number of times, the maximal reliable communication rate is
equal to the minimum of the individual channel capacities. In
a more practical scenario, the end-to-end delay of the network
is constrained. Since it is wasteful for a node to wait to
decode a long block code, the nodes should opt to apply
causal operations to their measurements instead. However,
determining the maximal rate of reliable communication over
such networks, let alone determining the error probability
behavior, turns out to be very challenging.

If we fix the message size and number of channels and let
the number of time steps grow, decoding with high probability
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Setting Theorem Instantaneous Hops Delayed Hops
Single
packet Th. 2 P P

1+P

Packet
streaming Th. 5 exp {2(C −R)} − 1 1 − exp {−2(C −R)}

TABLE I: Main results. C ≜
1

2
log(1 + P ) denotes the channel

capacity of an individual additive white-Gaussian noise channel with
SNR P , and R is the data-generation rate in the streaming setting.

is guaranteed, and one seeks the optimal error exponent.
Determining the optimal error exponent turned out to be
difficult even for the simple case of single-bit transmission
over a tandem of binary symmetric channels [1], [2], and was
eventually proved by Ling and Scarlett [3] to equal to that of
a single channel. They further extended the scope to any finite
number of messages in [4].

The behavior of large networks can be expressed by taking
the number of channels to grow linearly with the number of
time steps. The minimum ratio between the two, such that
the error probability may be arbitrarily small, was termed
Information Velocity (IV) by Polyanskiy (see [1], [5]) in the
single-bit context. The same term was used earlier by Iyer and
Vaze [6] in a related setting of spatial wireless networks.1

Analyzing the IV of the transmission of a single message
does not capture the entire behavior of the network: In case
of a stream of messages, there is an inherent tension between
the velocity across the network and the error probability of
different messages. Analyzing the IV for an infinite stream of
messages is, therefore, more challenging. For transmission of a
stream of messages over a cascade of packet-erasure channels
(with instantaneous ACK/NACK feedback), the existence of a
positive IV can be derived from stochastic network calculus
[7]–[10] (these results also hold for a single packet without
feedback). In [11], the explicit IV was derived for streaming
over packet-erasure channels with such feedback. This work
also derived the IV of transmitting a single packet and deter-
mined the explicit error decay rate for velocities below the IV
for both the single-packet and streaming settings.

Despite these efforts, no explicit expressions for the IV for
non-erasure channels are available even for a single bit, let
alone for streaming or error probability decay rate guarantees.

In this work, we consider a cascade of additive white-noise
(say Gaussian) channels with the same signal-to-noise ratio
(SNR) P > 0, equipped with perfect and local feedback. That
is, each node is aware of the measurements of the next node

1Similar concepts also exist in other disciplines, e.g., in physics, in
neuroscience, epidemic spread in networks, and in marketing and finance.
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Causal
source

Transmitter
(Node 0) + Node 1 + • • • Node r • • •

• • •

Z0 (t) Z1 (t)
Stream of

packets
W (⋅)

Decoded packets
Ŵr (⋅∣t)

Decoded packets
Ŵ1 (⋅∣t)

X0 (t) Y0 (t) X1 (t) Y1 (t) Yr−1 (t) Xr (t)

Fig. 1: Block diagram of the system. Xr (t), Yr (t), and Zr (t) are the channel input, output, and noise, respectively, at node r at time t.
Each T time steps, a new packet is generated. At every time step, all the nodes decode all the hitherto arrived packets.

in a causal manner; see Figure 1. For this setting, we derive
lower bounds on both the single-packet and the streaming IVs,
as summarized in Table I. In particular, the streaming IV is
positive for any R < C, and the bound on the streaming IV.
reduces to that on the single-packet IV in the limit of R → 0.2

Reminiscent of [13], our approach is based on the source
node translating the incremental message history into a real
number. Subsequently, this number is handled by the network
in an analog linear manner. Namely, each node keeps the
best linear estimator of that number based on its past mea-
surements, as well as the estimate of the next node (known
thanks to the feedback), and transmits a scaled version of the
difference. Indeed, for a single data packet, the communication
between the source node and the first relay reduces to the
Schalkwijk–Kailath scheme for feedback communication over
an additive-noise channel [14], [15], which can be viewed [16]
as an application of the joint source–channel coding scheme
with feedback of Elias [17]. On the other hand, the first
transmission of each of the nodes reduces to scalar amplify-
and-forward relaying [18].

Treating a representation of a data message as an analog
source is a concept that has proved useful in relaying schemes
[18]–[20]. Using that concept, techniques from source coding
and joint source–channel coding find their way into digital
communication settings. In the context of our work, the esti-
mation at the relays is reminiscent of the sequential Gaussian
CEO problem [21]–[23]. In our solutions, the source node
builds its scalar representation of the data stream as if an ana-
log source were revealed to it via successive refinement [24].

Due to the amount of concepts involved, we present our
results gradually. We first address a single source to be
transmitted, and then streaming. Within each of the above, we
start with an analog source and consider the estimation mean-
squared error (MSE), and in particular its decay rate, before
advancing to data packets and considering error probabilities.
For error probabilities, we show that for velocities lower
than our achievable bound on the IV, the error probabilities
decay at least exponentially fast, while if the noise is assumed
to be Gaussian (or, more generally, sub-Gaussian), the error
probabilities are shown to decay at least double exponentially,

2In the body of the paper, we consider instantenous hops for ease of presen-
tation; the results for both dealyed and instantaneous hops are summarized
in Table I. The translation is immediate, by a linear transformation of the
velocity, from v in instantaneous hops to v̄ = v/(1 + v) in delayed hops.
The single-packet bound for delayed hops was independently derived by
Inovan [12, Ch. 5].

extending the known behavior of the Schalkwijk–Kailath
scheme [14], [15] to multiple relays.

The proofs of all the statements are available in [25],
along with plots and a more detailed exposition.

II. PROBLEM STATEMENT

Z, Z≥0, R, R≥0, and N denote the sets of integer, non-
negative integer, real, non-negative real, and natural numbers,
respectively. Logarithms and exponents are taken to the natural
base. f(x) = o (g(x)) means lim

x→∞

f(x)
g(x) = 0. We denote

ā =
a

1+a
for a ∈ R≥0. For sequence a and for t1, t2 ∈ Z≥0,

t1 ≤ t2, denote a(t1 ∶ t2) ≜ [a(t1), a(t1 + 1), . . . , a(t2)].
The binary entropy and binary Kullback–Leibler divergence
functions are denoted by h(p) and D (p∥q). X ↔ Y ↔ Z
denotes a Markov triplet, viz. X is independent of Z given Y .

A. Communication Model

Causal source. Every T time steps, a source generates a
new message that comprises ℓ bits, namely, at time t =

Tτ for τ ∈ Z≥0, the source generates packet W (τ) =

B (τℓ ∶ (τ + 1)ℓ − 1) where B (i) ∈ {0, 1}. The bits of the
entire message sequence, {B (i)∣i ∈ Z≥0}, are assumed i.i.d.
uniform. Define the average rate of this source as

R =
ℓ

T
log(2). (1)

Channels. The network is composed of a cascade of chan-
nels; channel r ∈ Z≥0 is an additive noise channel:

Yr (t) = Xr (t) + Zr (t),
where Xr (t), Yr (t), and Zr (t) are the channel input, output,
and noise, respectively, at time t ∈ Z≥0. The entries of
all the noise sequences {Zr (t)∣r, t ∈ Z≥0} are i.i.d. zero-
mean, unit variance, and independent of all channel inputs.
All channel inputs are subject to a mean power constraint:
E [X2

r (t)] ≤ P, ∀r, t ∈ Z≥0.
The following channel quantities will be used in the sequel:

C =
1
2
log(1 + P ) is the capacity of an AWGN channel with

SNR P , and η ≜ (1 − P̄ ) ⋅ exp {2R} = exp {−2(C −R)}.
As will be formally defined in the node functions below,

perfect feedback is available in each channel, from the channel
output to the terminal that feeds it, in the subsequent time step.

Originating transmitter (node 0). At each time t ∈ Z≥0,
node 0 generates a channel input X0 (t) as a function of
the packet history W (0 ∶ ⌊t/T ⌋), and of all past outputs of
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channel 0, Y0 (0 ∶ t − 1), which are available via feedback.
The input is subject to the power constraint P .

Node r (r ∈ N). At each time t ∈ Z≥0, node r generates
the channel input Xr (t) as a function of all its measure-
ment history3

Yr−1 (0 ∶ t) from its feeding channel (channel
r − 1), and from all its feedback history from the subsequent
channel (channel r), Yr (0 ∶ t − 1). The input is subject to
the power constraint P . The relays also produce estimates
of the message.4 Let B̂r (n∣t), B̂r (0 ∶ n∣t), Ŵr (n∣t), and
Ŵr (0 ∶ n∣t) denote the estimates of B (n), B (0 ∶ n), W (n),
and W (0 ∶ n), respectively, at node r at time t based on the
measurement history Yr−1 (0 ∶ t) and with respect to (w.r.t.)
the feedback history Yr (0 ∶ t − 1).

Scheme. We refer to the collection of maps of nodes 0 to
r ∈ N at times 0 to t ∈ Z≥0 as an (r, t)-scheme. A scheme
is defined as a nested set collection of (r, t)-schemes w.r.t.
t ∈ Z≥0 for a fixed r ∈ N, and w.r.t. r ∈ N for a fixed
t ∈ Z≥0, to wit, an (r, t)-scheme equals to the union of all
the (r̃, t̃)-schemes over r̃ ≤ r, t̃ ≤ t.

B. Performance Measures for Streaming

Error Probability. We define the bit error probability for bit
n at relay r at time t as ϵr (n∣t) ≜ Pr (B̂r (n∣t) ≠ B (n)).
We define the maximal bit error probability as a function of
the detection delay ∆ (the number of time steps elapsed since
the generation of the bit) [11] as

Pe (r,∆) ≜ sup
τ∈Z≥0

max
τℓ≤n≤(τ+1)ℓ−1

ϵr (n∣τT +∆) . (2)

The outer maximization (supremum) is carried over all the
packets, whereas the inner maximization is carried over all
the bits inside a packet. ∆ is the elapsed time (delay) after
a generated bit is decoded. Thus, Pe (r,∆) is the worst-case
error probability across all the bits recovered ∆ time steps
after their generation.

Achievable streaming velocity. A streaming velocity v ∈

R≥0 of a source of average rate R is said to be achievable
if there exists a scheme, such that, limr→∞ Pe (r, ⌊ r

v
⌋) = 0 ,

namely, ∆ = ⌊r/v⌋ in (2).
Streaming IV. The streaming IV of a source of average

rate R, denoted by V(R), is defined as the supremum of all
achievable streaming velocities of that source. For simplicity,
we assume a periodic arrival pattern, to wit, R nats are
generated by the source every time step.

III. TRANSMISSION OF A SINGLE SOURCE SAMPLE

In this section, we consider the problem where instead of
the data source, we transmit a single zero-mean unit-variance
source sample S over the network under a minimum MSE
criterion. Let Ŝr (t) denote the source estimate at node r at
time t. We will analyze MSEr (t) ≜ E [(S − Ŝr (t))

2]. We
propose the following simple linear scheme, which is a natural
extension of the single-channel scheme of Elias [17].

3The current measurement included, that is, we assume instantaneous hops.
4We consider decoding at a general node r ∈ N. This decoding does not

affect the creation of subsequent channel inputs in any way.

Scheme 1. Initialization.
• Since the transmitter (node 0) knows S perfectly, it sets
Ŝ0 (t) = S for all t ∈ Z≥0.

• Each node r ∈ N initializes its estimate before transmis-
sion begins to the mean: Ŝr (−1) = 0.

Estimation at node r ∈ N. At each time t ∈ Z≥0, constructs
an estimate of S: Ŝr (t) = Ŝr (t − 1) + γr (t)Yr−1 (t), where
γr (t) is a linear MSE (LMMSE) constant.
Transmission by node r ∈ Z≥0. At each time t ∈ Z≥0

Xr (t) = βr (t) [Ŝr (t) − Ŝr+1 (t − 1)] , (3)

where βr (t) is a power-normalization constant.

Since node r ∈ N at time t knows Yr+1 (0 ∶ t − 1) via
feedback, it can construct Ŝr+1 (t − 1) which is used to
generate the transmit signal (3) of node r at time t.

Lemma 1. In Scheme 1, all channel inputs and outputs and
all estimates have zero mean. Setting γr (t) = Cov(S,Xr−1(t))

1+Var(Xr−1(t))
,

we have the following for r, t, τ ∈ Z≥0.
1) Ŝr (t) is the LMMSE estimate of S from Yr−1 (0 ∶ t).
2) Cov (Yr (t), Yr (τ)) = 0 for t ≠ τ .
3) Cov (S,Xr (t)) = βr (t) [MSEr+1 (t − 1) −MSEr (t)] .
4) Var (Xr (t)) = β

2
r (t) [MSEr+1 (t − 1) −MSEr (t)] .

The proof is based on properties of LMMSE estimation,
primarily the orthogonality principle [26, Ch. 7-3].

Using the properties of Lemma 1, and choosing βr (t) to
satisfy the power constraint with equality, we find that the
constants satisfy, for r, t ∈ Z≥0,

βr (t) =
√

P

MSEr+1 (t − 1) −MSEr (t)
, (4a)

γr+1 (t) =
√
P (MSEr+1 (t − 1) −MSEr (t))

P + 1
. (4b)

Further calculations yield the MSE of the scheme, as
follows.

Lemma 2. Scheme 1 with the parameters of (4) satisfies the
recursion for all r ∈ N, t ∈ Z≥0

MSEr (t) = P̄ MSEr−1 (t) + (1 − P̄ )MSEr (t − 1),
with the initial conditions MSEr (−1) = 1 for all r ∈ Z≥0,
and the boundary conditions MSE0 (t) = 0 for all t ∈ Z≥0.
Furthermore, the solution of this recursion for all r, t ∈ N, is

MSEr (t) = (1 − P̄ )t+1
r

∑
k=1

(t + r − k
r − k )P̄ r−k

. (5)

In order to study the asymptotic behavior of (5), we fix
some velocity v > 0 such that t = ⌊r/v⌋, and consider the
MSE sequence as a function of the relay index.

Theorem 1. Let v > 0 be some fixed velocity. Then, the MSE
of Scheme 1 satisfies MSEr (⌊ r

v
⌋) ≤ exp {−rE1(v) + o(r)},

where the o(r) term is independent of v, E1(⋅) is defined as

E1(v) ≜ {
1
v̄
D (v̄∥P̄ ), v < P ;

0, v ≥ P.
(6)
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Theorem 1 implies that, for any v < P , the MSE goes to
zero with t, that is, the source is reconstructed with arbitrarily
good precision asymptotically. Indeed we can interpret this re-
sult as a lower bound on the source “reconstruction velocity”.

IV. TRANSMISSION OF A SINGLE DATA PACKET

In this section, the error probability of transmitting a single
packet over the network is derived. All the definitions of
Section II carry over to the single-packet transmission setting,
except for the maximal bit error probability (2), which is
defined as Pe (r, t) ≜ max

0≤n≤ℓ−1
ϵr (n∣t). The IV is defined w.r.t.

this error probability. Since our bounds on the single-packet
IV do not depend on ℓ (and correspond to R = 0), we denote
the single-packet IV by V without an argument.

We will subsequently analyze the packet error probability
(decoding error probability of B (0 ∶ ℓ − 1)):
ϵr (0 ∶ ℓ − 1∣t) = Pr (B̂r (0 ∶ ℓ − 1∣t) ≠ B (0 ∶ ℓ − 1)).
Clearly, the packet error probability bounds from above the
corresponding individual bit error probabilities.

We map the bits B (0 ∶ ℓ − 1), which comprise the data
packet, to a PAM constellation point using natural labeling:

S
ℓ
=

√
3
ℓ−1

∑
i=0

(−1)B(i)
2
−(i+1)

, (7)

and apply Scheme 1 by viewing S
ℓ as source sample. Since the

bits B (0 ∶ ℓ − 1) are uniformly distributed, Sℓ is uniformly
distributed over a discrete symmetric finite grid of size 2

ℓ with
the spacing between two adjacent constellation points being

dℓ =
√
3 ⋅ 2

−ℓ+1
;

in particular, S
ℓ has zero mean. In the limit of an infinite

message length ℓ, Sℓ converges to

S = lim
ℓ→∞

S
ℓ
=

√
3

∞

∑
i=0

(−1)B(i)
2
−(i+1)

.

Since the bits {B (i)} are i.i.d. uniform, S is uniformly
distributed over [−

√
3,

√
3), meaning that it has zero mean and

unit variance. For any ℓ, the variance of Sℓ is smaller than 1.
This allows us to construct the following transmission scheme
for a single packet, which satisfies the power constraints P .

Scheme 2. 1) The transmitter (node 0) maps B (0 ∶ ℓ − 1)
to S

ℓ according to (7).
2) All nodes apply Scheme 1 with S

ℓ instead of S.
3) At each time step t ∈ Z≥0, each relay (node r for r ∈ N)

estimates B (0 ∶ ℓ − 1) from Ŝ
ℓ
r (t)—the estimate of S

ℓ

at relay r at time t.

Denote by E
ℓ
r (t) ≜ S

ℓ − Ŝ
ℓ
r (t) the error of Ŝ

ℓ
r (t) in esti-

mating S
ℓ. Since Var (Sℓ) ≤ 1, E [{Eℓ

r (t)}
2] ≤ MSEr (t).

Combining this with the Chernoff bound yields the following.

Lemma 3. The packet error probability of Scheme 2 is
bounded, with MSEr (t) of Lemma 2, as

ϵr (0 ∶ ℓ∣t) ≤ 1

3
⋅ 2

2ℓ
⋅MSEr (t).

Substituting Theorem 1 in Lemma 3, yields

Theorem 2. Let ℓ ∈ N be the packet size. Then, the single-
packet IV is bounded as V ≥ P = 1 − exp {−2C}.

Moreover, for velocity v < P and E1(v) of (6),

ϵr (0 ∶ ℓ∣⌊v/r⌋) = exp {−E1(v)r + o(r)}.

For a single channel (r = 1) and Gaussian noise, Schalkwijk
and Kailath [15] (see also [14], [16], [27, pp. 481–482], [28,
Ch. 17.1.1]) showed that the error probability of transmitting
a single message decays double exponentially with t:

ϵ1 (0 ∶ ℓ∣t) ≤ exp { − exp {2Ct + o(t)} }. (8)

We next show that the doubly-exponential behavior extends
also to our setting of multiple AWGN channels. To that end,
we tighten the bound of Lemma 5 for AWGN channels.

Lemma 4. Scheme 2 over AWGN channels achieves

ϵr (0 ∶ ℓ∣t) ≤ 2exp {− 3

22ℓ+1 ⋅MSEr (t)
}

with MSEr (t) of Lemma 2.

The proof relies on replacing the Chernoff inequality w.r.t.
the estimation error E

ℓ
r (t) in Lemma 3 with a Chernoff–

Hoeffding bound w.r.t. a (sub-)Gaussian E
ℓ
r (t).

Substituting Theorem 1 in Lemma 4, yields

Theorem 3. Assume AWGN channels and let ℓ ∈ N be the
packet size. Then, for velocity v < P , the achievable prefix-free
error probability is bounded from above as Scheme 2 achieves

ϵr (0 ∶ ℓ∣⌊r/v⌋) = exp { − exp {E1(v)r + o(r)} }, (9)

where E1(v) was defined in (6). In particular, V ≥ P .

Remark 1. Theorem 3 extends to sub-Gaussian noises, since
proving Lemma 4 relies on the sub-Gaussianity of the noise.

Eq. (9) may be rewritten in terms of time t as

ϵr (0 ∶ ℓ∣⌊r/v⌋) = exp { − exp {E1(v) ⋅ vt + o(t)} }. (10)

Eq. (10) means that the doubly-exponential behavior (8) of
the Schalkwijk–Kailath scheme [14], [15] extends also to
communication at a fixed velocity across multiple relays as
long as the velocity is below P .

The bound of Lemma 3 deteriorates exponentially with
an increase in ℓ. We next derive a bound on the prefix
error probability ϵr (0 ∶ n∣t), that holds uniformly for all ℓ
(assuming n ≤ ℓ), and hence serves as a stepping stone for
the derivation of similar bounds for streaming in Section V.
The “cost” of universality is a slower decay as a function of the
MSE, yet this result would also suffice for achieving V = P .

Lemma 5. The prefix error probability of Scheme 2, for any
n ≤ ℓ, with MSEr (t) of Lemma 2, is bounded as

ϵr (0 ∶ n∣t) ≤ 2√
3
⋅ 2

n
⋅
√
MSEr (t).
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V. STREAMING

A. Successively Refined Source

Suppose that the transmitter node does not have full knowl-
edge of the source at the start (t = 0), but rather it is
given an estimate Ŝ0 (t) at time t, such that these estimates
form a Markov chain Ŝ0 (0) ↔ Ŝ0 (1) ↔ . . . ↔ S. Thus,
we can think of them as being the reconstructions obtained
from a successive refinement scheme feeding the network. In
particular, we will assume that these transmitter inputs have

MSE0 (t − 1) = exp{−2Rt} ∀t ∈ N (11)

for some R > 0. We can think of this as a digital message that
arrives at R nats per sample (neglecting rounding issues), or
as a source that is gradually revealed to the transmitter via a
fixed-rate successive refinement scheme. 5

The scheme that we use is almost identical to Scheme 1,
except the boundary condition which is not 0 for all t but
rather improves according to (11).

Scheme 3. Transmitter initialization. The transmitter (node 0)
sets the given Ŝ0 (t) for all t ∈ Z≥0.

The rest of the scheme (initialization of nodes r ∈ N,
estimation at nodes r ∈ N, and transmission by nodes r ∈ Z≥0)
is exactly as in Scheme 1.

The power-normalization constant βr (t) and the LMMSE
constant γr (t) are set according to (4).

In the following theorem, we evaluate the asymptotic be-
havior of the MSE for a fixed velocity. Namely, we fix some
velocity v > 0, set time t = ⌊r/v⌋, and consider the MSE
sequence as a function of relay r.

Theorem 4. Let v > 0 be some fixed velocity. Then, the MSE
of Scheme 3 satisfies MSEr (⌊ r

v
⌋) ≤ exp {−rES(v) + o(r)},

where the correction term is independent of v,

ES(v) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

1−η
D (1 − η∥P̄ ) + 2R ( 1

v
− η

1−η
) ,0 ≤ v ≤

1−η
η

;
1

v̄
D (v̄∥P̄ ), 1−η

η
< v ≤ P ;

0, P < v;

(12)

and η ≜ (1 − P̄ ) ⋅ exp {2R} = exp {−2(C −R)}.

As the rate grows, the exponent ES(v) becomes the expo-
nent with full source knowledge at the transmitter at t = 0,
E1(v) (6). This is to be expected, as, in the limit R → ∞,
the initial MSE drops immediately. Moreover, for all R ≥ C,
the exponents are already equal, as the first region of (12) is
empty in that limit.

B. Packet Streaming

We now finally reach our target scenario as described
in Section II. We combine the PAM mapping with the
successively-refined source scheme, as follows. Recall that at
time t = τT for τ ∈ Z≥0 the packet τ is made available at
the transmitter. Thus, at time t = τT it has access to bits

5This is the MSE that is attained by a sequence of rate-R greedy optimal
quantizers (up to rounding issues) that are applied to a uniform source sample.
For continuous sources, this decay is exponentially optimal in t.

B (0 ∶ τℓ − 1). By (7), the transmitter can then map these bits
to the corresponding MAP constellation point

S
τℓ

=

√
3
τℓ−1

∑
i=0

(−1)B(i)
2
−(i+1)

.

As in Section IV, we define S to be the infinite-constellation
limit: S = limℓ→∞ S

ℓ
= limτ→∞ S

τℓ; recall that S has zero
mean and unit variance. Clearly, the nested constellations
have all zero mean, and they form a Markov chain S

0
↔

S
ℓ
↔ S

2ℓ
↔ S

3ℓ
↔ . . . ↔ S. Furthermore, they form the

LMMSE (even MMSE) estimates of S given the available bits,
since the resulting estimation error S − S

τℓ is independent of
B (0 ∶ τℓ − 1). Thus, we use Scheme 3 for the successively
refined source S, with S

kℓ taking the role of Ŝ0 (ℓ).

Scheme 4. 1) At instants t = τT for τ ∈ Z≥0, the transmit-
ter maps B (0 ∶ τℓ − 1) to S

τℓ and updates

Ŝ0 (τT ) = Ŝ0 (τT + 1) = ⋯ = Ŝ0 ((τ + 1)T − 1).
2) The transmitter and relays apply Scheme 3 w.r.t. the

(virtual) source S.
3) At each time step t ∈ Z≥0, each relay (node r

for r ∈ N) estimates the hitherto generated bits
B (0 ∶ (⌊ t

T
⌋ + 1) ℓ − 1) from Ŝr (t).

We can now invoke the MSE of Theorem 4 and the bound
on the error probability of Lemma 5, which holds uniformly
for all packet sizes, to obtain the following.

Lemma 6. In Scheme 3 above, for any average rate R > 0
and for all v < P ,

Pe (r, ⌊
r
v ⌋) ≤ exp {− inf

t0∈Z≥0

[ t0 +∆

2v
ES ( v∆

t0 +∆
) − t0R] + o(r)}

where the worst-bit error probability Pe (r,∆) was defined
in (2), and ES(⋅) is given by (12).

Since each packet is generated at a different time, at a
particular node r at a particular time t, each packet has a
different velocity for the purpose of Pe (r,∆). Hence, the
key step in the proof of Lemma 6 is translating the bound
of Theorem 4 using an affine transformation of the velocity.

Having proved this, we are ready to state our main result.

Theorem 5. Let R < C be some average rate (1) where
C ≜

1
2
log(1 + P ). Then, the streaming IV is bounded from

below as V(R) ≥ exp {2(C −R)} − 1.

The proof is based upon substituting ES(v) (12) in the
result of Lemma 6. Noticing that the argument of ES(⋅) in (12)
is at most v, for v below the claimed bound we always take
the first region in (12) which gives the desired positive error
exponent. (it becomes independent of t0 after the substitution,
making the minimization redundant).

As expected, the IV bound tends to the single-packet IV
bound P as the rate goes to zero, and to zero as the rate goes
to C. It is worth noting that, for any fixed P , the achievable ve-
locity is a convex function of R. In the low-SNR limit P → 0,
the curve approaches the linear function: V (R) ≅ (1 − R

C
)P .

In the high-SNR limit, on the other hand, for any fixed R, our
bound grows linearly with P : V (R) ≅ P exp{−2R}.
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[16] R. G. Gallager and B. Nakiboğlu, “Variations on a theme by Schalkwijk
and Kailath,” IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 6–17, Dec.
2009.

[17] P. Elias, “Channel capacity without coding,” in Proceedings of the IRE,
vol. 45, no. 3, Jan. 1957, pp. 381–381.

[18] B. Schein and R. G. Gallager, “The Gaussian parallel relay channel,” in
Proc. Int. Symp. Info. Theory (ISIT), Sorrento, Italy, June 2000, p. 22.

[19] J. N. Laneman, D. N. Tse, and G. W. Wornell, “Cooperative diversity
in wireless networks: Efficient protocols and outage behavior,” IEEE
Trans. Inf. Theory, vol. 50, no. 12, pp. 3062–3080, Nov. 2004.

[20] Y. Kochman, A. Khina, U. Erez, and R. Zamir, “Rematch-and-forward:
Joint source/channel coding for parallel relaying with spectral mis-
match,” IEEE Trans. Inf. Theory, vol. 60, no. 1, pp. 605–622, Jan. 2014.

[21] S. C. Draper and G. W. Wornell, “Successively structured CEO prob-
lems,” in Proc. IEEE Int. Symp. on Inf. Theory (ISIT), Lausanne,
Switzerland, July 2002, p. 65.

[22] ——, “Side information aware coding strategies for sensor networks,”
IEEE Journal on Selected Areas in Communications, vol. 22, no. 6, pp.
966–976, 2004.

[23] J. Chen, X. Zhang, T. Berger, and S. Wicker, “Rate allocation in
distributed sensor network,” in Proc. Allerton Conf. on Comm., Control,
and Comput., vol. 41, no. 1, Monticello, IL, October 2003, pp. 531–540.

[24] W. H. R. Equitz and T. M. Cover, “Successive refinement of informa-
tion,” IEEE Trans. Inf. Theory, vol. 37, no. 2, pp. 851–857, Mar. 1991.

[25] E. Domanovitz, A. Khina, T. Philosof, and Y. Kochman, “Information
velocity of cascaded Gaussian channels with feedback,” arXiv preprint
arXiv:2311.14223, 2023.

[26] A. Papoulis and S. U. Pillai, Probability, Random Variables, and
Stochastic Processes, 4th ed. Tata McGraw-Hill Education, 2002.

[27] R. G. Gallager, Information Theory and Reliable Communication. New
York: John Wiley & Sons, 1968.

[28] A. El Gamal and Y.-H. Kim, Network Information Theory. Cambridge
University Press, 2011.

504Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on September 30,2024 at 01:09:34 UTC from IEEE Xplore.  Restrictions apply. 


